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Abstract 

A solid oxide fuel cell (SOFC) converts chemical energy of a fuel gas directly into electrical 

energy representing an auspicious technology for efficient electricity generation. A SOFC 

system with anode exhaust gas recirculation (AEGR) enables net electrical DC-efficiency 

of up to 65%. For efficient and durable operation, it is of crucial importance to monitor 

relevant characteristic parameters and keep them within safe and durable operating 

limits. The oxygen-to-carbon-ratio and the fuel utilization are such characteristic 

parameters and have to be kept within stack- and reformer-specific limits. Their control is 

not straightforward due to the enhanced complexity of a SOFC system with AEGR and 

dependence on fluctuating natural gas (NG) quality. In this paper, a soft-sensor concept 

is presented to determine the H/C-ratio of NG as measure of its quality with high accuracy. 

It is composed of an energy balance by means of enthalpy flow rates and Gaussian 

process regression models for estimation of unknown amount of inert gas species 𝑥𝑁2
, 

𝑥𝐶𝑂2
 in NG as well as the enthalpy error as a corrector term of the ideal energy balance. 

1 Introduction 

Progressive global warming and growth of worldwide energy demand are currently one 

of the major challenges. For the respective reduction of greenhouse gas emissions 
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primary energy consumption an enhanced use of renewable energies as well as 

replacement of conventional energy converters with high carbon footprint by technologies 

with higher efficiency is needed [1,2]. One of the major promising technologies in this 

regard is the fuel cell [2–4]. Fuel cells are efficient electrochemical devices for power 

generation, which convert chemical energy directly into electrical energy by oxidizing a 

fuel gas. 

One of the most promising fuel cell technologies represents the high temperature solid 

oxide fuel cell (SOFC). It uses nonprecious metals as electrocatalyst material of the 

electrodes and an ion-conducting ceramic as electrolyte, which simplifies the cell 

construction and eliminates a complex electrolyte management in comparison to low-

temperature fuel cell types [5]. The resource-efficient use of nonprecious and abundant 

metals as electrocatalyst leads to lower costs and the potential of internal reformation of 

natural gas (NG) within the cell, offers a great fuel flexibility and a reduced complexity for 

fuel pre-processing [2,5–7]. Moreover, SOFC technology is enabling a high energy 

utilization with a net electrical efficiency of up to 65% with regard to direct current (DC) as 

output, which is the same order of efficiencies reached by large power plants [5,6,8–11]. 

This can be enhanced to an overall efficiency of around 90% by operation a combined 

heat and power generator, where heat in the exhaust gas with temperatures around 

200°C is also used [2,4,5,7,9–14].  

When using NG as fuel, the system configuration with increased efficiency can be 

obtained by anode exhaust-gas recirculation (AEGR), where a part of the depleted anode 

exhaust gas is recirculated and mixed with fresh NG  prior to entering the reformer [15]. 

This increases electrical efficiency and supplies steam for the reforming process [14,15]. 

Next to cost reduction, faster start-up time and dynamic operating conditions caused by 

a high share of renewable energies in the near future, improvement of durability and 

enhanced system efficiency are core topics to be adressed for the SOFC technology 

[5,9,16–21]. This includes robustness to variations in NG quality supplied to the SOFC 

system, which can result from fluctuating NG quality itself or the feed-in of synthetic 

hydrogen or methane produced by Power-to-X technologies. 



 

 

3 

 

Characteristic parameters such as fuel utilization or the oxygen-to-carbon-ratio to avoid 

fuel depletion or carbon formation, respectively, are essential for optimal operation in this 

regard. They have to be kept within safe and durable operating ranges in dependence of 

stack- and reformer-specific limits [22]. For high system efficiency, the parameters need 

to be kept as narrow as possible to the limiting values though. An overview on control 

concepts of the fuel utilization and the oxygen-to-carbon-ratio with regard to SOFC 

systems with AEGR is given in Schäfer et al. [23]. It shall be also mentioned that a novel 

control concept of these characteristic parameters based on oxygen sensors in the fuel 

gas of a SOFC system is proposed by Schäfer et al. [24], where still some dependency 

on fuel gas composition is given. 

The definition of the system and stack specific fuel utilization (FU) as well as the oxygen-

to-carbon-ratio 𝛹 at the reformer inlet can be seen in equation (1), (2) and (3). A common 

control is a feed-forward control, which is based on uncertain parameters recirculation 

ratio 𝑟, NG coefficients 𝐾𝑒−, 𝐾𝑜 and 𝐾𝑐 as well as molar flow rate of NG 𝑛̇𝑁𝐺. The cell 

number 𝑛𝑐𝑒𝑙𝑙 and current 𝑖𝑐𝑒𝑙𝑙 are known or measured. 

𝐹𝑈𝑠𝑦𝑠 =
𝑖𝑐𝑒𝑙𝑙 ∙ 𝑛𝑐𝑒𝑙𝑙

𝑛̇𝑁𝐺 ∙ 𝐾𝑒− ∙ 𝐹
 (1) 

𝐹𝑈𝑠𝑡𝑎 =
𝑖𝑐𝑒𝑙𝑙 ∙ 𝑛𝑐𝑒𝑙𝑙

F ∙ ṅgas,an,in ∙ Ke−,an,in
=  

(1 −  𝑟) ∙ 𝐹𝑈𝑠𝑦𝑠

1 −  𝑟 ∙ 𝐹𝑈𝑠𝑦𝑠
 (2) 

𝛹 =  (
𝑟 ∙ 𝐹𝑈𝑠𝑦𝑠 ∙ 𝐾𝑒−

2
+ 𝐾𝑂 )

1

𝐾𝐶
 (3) 

The uncertain parameters cannot be measured directly by a sensor and rely on NG 

composition, which quality is changing over time and normally is not constantly tracked 

[1,25,26]. Figure 1 lists the fluctuation range of major gas species contained in NG for 

some locations in Europe taken from Hering [25]. The major species contained in NG is 

methane with a share of ~80-90%. Additional species in NG are ethane, carbon dioxide, 

propane, nitrogen and butane. Sulfur is not included in the list, because it is only present 

in a neglectable low range of some parts per million (ppm) and is not included as 

measured variable in the NG data. In some studies it is stated that a sulfur content above 

10 or even 2 ppm is sufficient to start catalyst deactivation [26–28]. More related 
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information on sulfur tolerance and poisoning is given in the related literature [29–32]. For 

more detailed information on the variation of NG compositions and the related 

standardization, the reader is referred to the relevant literature [25,33–38]. 

Installing concentration measurement devices at the system inlet is a possible and easy 

way to determine NG quality. However, it comes along with in most cases not acceptable 

additional costs and increases the size of a SOFC system. Accurate concentration 

measurements imply also long measurement times, which is caused by extractive 

measuring procedures [18,39–42]. These methods are thus unsuited for commercial 

usage. 

 

Figure 1: Composition range of NG in molar fraction for some locations in Europe (NG 

data is taken from Hering [25]). 

The most common remedy represents a safety buffer of up to 10%-points on the 

characteristic parameters to ensure safe operation, which means a great amount of 

unused fuel gas in the stack and a loss in efficiency. A different method is thus needed to 

determine NG quality, where a respective concept is presented in this paper. 

The remainder of this paper is structured as follows. Firstly, fundamentals regarding 

SOFC systems, gas coefficients and respective correlations as well as Gaussian process 

regression are outlined. Subsequently, the basic concept to use models of SOFC 

components (tail-gas burner, hotbox) as calorimeter is illustrated. The experimental 

procedure is followed by the results, which are divided into inert gas estimation, 
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estimation for enthalpy errors and the essential results for determination of H/C-ratio. A 

short summary and an outlook on further work is given in the last part of this paper. 

 

2 Fundamentals 

2.1 SOFC system 

In the following s short introduction into the basics of a SOFC system is given. It shall be 

mentioned that further and more detailed information on SOFC systems have been given 

by the authors elsewhere [23,24]. 

A SOFC system includes the process steps gas treatment, electrochemical conversion 

and afterburning [5,9,12,26,43], where gas treatment consists of gas reforming and 

desulfurization and the electrochemical conversion happens in the stacks. It also contains 

some balance of plants components such as pumps, blowers, heat exchangers (HEX) 

and a tail-gas burner (TGB).  

A detailed description of the SOFC system used for this study has been presented by 

Weeber [44] and in the work of Hering [25]. The SOFC system is intended for NG 

operation with a net electric power output of 10 kW and a net electric system efficiency of 

ηel,sys ≈ 60%. A simplified piping and instrumentation diagram is shown in figure 2. The 

SOFC system owns an AEGR, where depleted fuel gas at the anode outlet is partly 

recirculated with a blower and mixed with fresh NG. The recirculation ratio 𝑟 is defined as 

the ratio of recirculated to total molar flow at the anode outlet and has two purposes 

[1,15,45]. For the avoidance of fuel depletion, a SOFC stack is limited mostly to a 𝐹𝑈𝑠𝑡𝑎 

in the range of 60 – 80% [1,21,43,46–49]. Recirculation of parts of the unused fuel leads 

thus to a higher utilization on system level and overall efficiency. Second, water vapor is 

in general needed for steam reforming. By recirculation of anode exhaust gas the water 

vapor is supplied without an external device or evaporator [50]. It has to be considered 

though that a too high recirculation rate leads to a dilution of the fuel gas. This essentially 

result in a drop of Nernst voltage of the SOFC cells and in the end to a lower power output 

[11,49,51].  

Sulfur contained in NG is removed by an integrated desulfurization unit prior to the 

reformer [43,50]. NG contains long-chain hydrocarbons. These hydrocarbons need to be 
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cracked in a reforming process by means of of water vapor or oxygen. Overall aim of the 

reforming process is the supply a hydrogen-rich gas known as reformate to the SOFC 

moduule for the electrochemical conversion [5,11,26,52]. The SOFC module itself 

comprises one or more SOFC stacks with multiple cells. The reformate essentially takes 

part in an electrochemical conversion at the anode with oxygen anions [43,52]. 

Anode exhaust gas, which is not recirculated, and the oxygen depleted cathode exhaust 

air are supplied to the TGB. In the TGB a complete combustion has to be accomplished 

[43]. The heat in the exhaust gas is used internally of the SOFC system to preheat the air 

and NG. The hot components, being the SOFC module, TGB, reformer and heat 

exchangers, are assembled together in a common enclosure, named hotbox, to reduce 

heat losses. 

 

Figure 2: Basic structure of SOFC system by Bosch [25]. 

The SOFC itself is based on the planar metal supported cell (MSC) technology by Ceres1 

allowing stack operating temperatures of 500-600°C. The cells are composed of 

gadolinia-doped ceria (CGO) as electrolyte material, Lanthanum Perovskite for the 

cathode, Ceria-Nickel-Cermets as anode material as well as a laser drilled substrate 

made of ferritic stainless-steel foil [48]. The cells are assembled to 5 kW stacks, offering 

a 𝐹𝑈𝑠𝑡𝑎 of up to 75%, an internal conversion of hydrocarbons such as CH4 of up to 100% 

and an electrical efficiency ηel,FC of > 63% based on the lower heating value of CH4 [48]. 

 
1 For more detailed information about the MSC technology by Ceres the reader is referred to the respective literature, such as [48,53]. 
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SOFC system control is divided into a control for the air-supply and control for the supply 

of fuel gas. The supplied air is used to cool the SOFC module, which results in an air 

utilization AU << 100%. The air supply is controlled via a closed loop control to meet inlet 

and outlet temperature of the SOFC module. The fuel gas supply is based on a 

feedforward control of the NG flow rate and the recirculation flow rate 𝑟, as shown in 

equation (4) and (5) [15,25]. Therein 𝛹 and 𝐹𝑈𝑠𝑡𝑎  need to be defined. NG composition 

needs to be known to calculate the respective gas coefficients 𝐾𝐶, 𝐾𝑂 and 𝐾𝑒−. 

𝑛̇𝑟𝑒𝑐 = 𝑛̇𝑁𝐺

(𝛹 ∙ 𝐾𝐶 − 𝐾𝑂)(1 + 2 ∙ 𝐾𝐶 − 𝐾𝑂)

𝐹𝑈𝑠𝑡𝑎 ((0.5 ∙ 𝐾𝑒− − (𝛹 ∙ 𝐾𝐶 − 𝐾𝑂)))
 (4) 

𝑛̇𝑁𝐺 =
𝑖𝑐𝑒𝑙𝑙 ∙ 𝑛𝑐𝑒𝑙𝑙

𝐹
∙

1

𝐹𝑈𝑠𝑡𝑎 ∙ 𝐾𝑒− + 2(𝛹 ∙ 𝐾𝐶 − 𝐾𝑂)(1 − 𝐹𝑈𝑠𝑡𝑎)
 (5) 

According to equation (1) and (2) FU can be specified in a SOFC system with AEGR for 

the stack by means of the fuel flow rate at the anode inlet as 𝐹𝑈𝑠𝑡𝑎 or for the overall 

system by means of the NG flow rate at the system inlet as 𝐹𝑈𝑠𝑦𝑠 [1,7,11,15,17,25,39,45]. 

Without recirculation (𝑟 = 0) both definitions are equal, as it is stated in equation (2), where 

𝐹𝑈𝑠𝑦𝑠 and 𝐹𝑈𝑠𝑡𝑎 are related via the recirculation-ratio 𝑟 [11,15,39,45].   

2.2 Gas coefficients and correlations 

Gas coefficients are used to describe NG composition. These are the gas coefficients for 

carbon, oxygen, hydrogen and nitrogen as well as an electron gas coefficient in mol per 

mol. Since each NG type owns its proper coefficients, e.g. pure CH4 has 𝐾𝑒−= 8, the 

coefficients are used to classify gas mixtures. Two NG compositions with identical gas 

coefficients lead to identical behavior of the SOFC system [25]. The gas coefficients 

according to equation (6) to (9) for carbon, oxygen, hydrogen and nitrogen are calculated 

on the basis of the individual concentrations 𝑥𝑁𝐺,𝑖 and the corresponding number of atoms 

𝑁𝑖 contained in the respective molecule as weighting factor [25]. Each coefficient thus 

defines the number of atoms of a particular element (C,O,H,N) [25]. The electron gas 

coefficient according to equation (10) describes the amount of potentially releasable 

electrons in a complete electrochemical conversion in dependence of the number of 

electrons 𝑁𝑒−,𝑖 for each gas species i [11,25]. 
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𝐾𝐶 = ∑ 𝑥𝑁𝐺,𝑖 ∙ 𝑁𝐶,𝑖 = 𝑥𝑁𝐺,𝐶𝐻4
+ 2𝑥𝑁𝐺,𝐶2𝐻6

+ 3𝑥𝑁𝐺,𝐶3𝐻8
+ 4𝑥𝑁𝐺,𝐶4𝐻10

+ 𝑥𝑁𝐺,𝐶𝑂2

𝑖

 (6) 

𝐾𝑂 = ∑ 𝑥𝑁𝐺,𝑖 ∙ 𝑁𝑂,𝑖 = 2𝑥𝑁𝐺,𝐶𝑂2

𝑖

 (7) 

𝐾𝐻 = ∑ 𝑥𝑁𝐺,𝑖 ∙ 𝑁𝐻,𝑖 = 4𝑥𝑁𝐺,𝐶𝐻4
+ 6𝑥𝑁𝐺,𝐶2𝐻6

+ 8𝑥𝑁𝐺,𝐶3𝐻8
+ 10𝑥𝑁𝐺,𝐶4𝐻10

𝑖

 (8) 

𝐾𝑁 = ∑ 𝑥𝑁𝐺,𝑖 ∙ 𝑁𝑁,𝑖 = 2𝑥𝑁𝐺,𝑁2

𝑖

 (9) 

𝐾𝑒− = ∑ 𝑥𝑁𝐺,𝑖 ∙ 𝑁𝑒−,𝑖

𝑖

 

         = 8𝑥𝑁𝐺,𝐶𝐻4
+ 14𝑥𝑁𝐺,𝐶2𝐻6

+ 20𝑥𝑁𝐺,𝐶3𝐻8
+ 26𝑥𝑁𝐺,𝐶4𝐻10

+ 2𝑥𝑁𝐺,𝐻2
 

(10) 

An important parameter to describe NG composition is the ratio of H-atoms to C-atoms 

(H/C). The H/C-ratio correlates to 𝐾𝑒−, 𝐾𝐶, 𝐾𝐻 as well as other gas properties such as cp 

(specific molar heat capacity of gas in J K-1 mol-1) or specific enthalpy h (in J mol-1). 

New correlations for 𝐾𝑒−, 𝐾𝐶, 𝐾𝐻 are derived within this work with H/C-ratio as descriptive 

variable under the prerequisite of constant or known amount of inert gas species 𝑥𝑁2
, 

𝑥𝐶𝑂2
. These correlations for H/C ≤ 4 are shown in equation (11) to (14). The index “no” 

states that inert gas species are not considered for the respective H/C-ratio. The 

derivation of the correlations is given for the interested reader in appendix A. 

𝐾𝑒− =
2 ∙

𝐻
𝐶 𝑛𝑜

+ 8

𝐻
𝐶 𝑛𝑜

− 2
∙ (1 − 𝑥𝑁2

− 𝑥𝐶𝑂2
) (11) 

𝐾𝐶 =
2

𝐻
𝐶 𝑛𝑜

− 2
∙ (1 − 𝑥𝑁2

− 𝑥𝐶𝑂2
) + 𝑥𝐶𝑂2

 
(12) 

𝐾𝐻 =
2 ∙

𝐻
𝐶 𝑛𝑜

𝐻
𝐶 𝑛𝑜

− 2
∙ (1 − 𝑥𝑁2

− 𝑥𝐶𝑂2
) (13) 

𝐻

𝐶 𝑛𝑜
=

2
𝐻
𝐶 ∙ (1 − 𝑎)

2 − 𝑎 ∙
𝐻
𝐶

           ,          𝑎 =
𝑥𝐶𝑂2

1 − 𝑥𝑁2
− 𝑥𝐶𝑂2

 (14) 
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The relationship between H/C-ratio and 𝐾𝑒−, 𝐾𝐶, 𝐾𝐻 for H/C > 4 is specified using 

regressions. NG data for H/C > 4 are based on the limit gas G222 [54] and some arbitrary 

gas mixtures of CH4 and H2 up to a H/C-ratio of 12. Good correlations are defined without 

considering inert gas species initially (“no”) and a subsequent respective conversion as 

shown in equation (15) to (17). The regressions are done with the curve fitting toolbox in 

Matlab [55]. The respective R-squared values as a measure for goodness-of-fit are for all 

regressions higher than 0.99 stating a high accuracy. 

𝐾𝑒− = (173.3𝑒
−1.058∙

𝐻
𝐶 𝑛𝑜 + 7.338𝑒

−0.07295∙
𝐻
𝐶 𝑛𝑜) ∙ (1 − 𝑥𝑁2

− 𝑥𝐶𝑂2
) (15) 

𝐾𝐶 = (8.19𝑒
−1.183∙

𝐻
𝐶 𝑛𝑜 + 1.271𝑒

−0.1629∙
𝐻
𝐶 𝑛𝑜) ∙ (1 − 𝑥𝑁2

− 𝑥𝐶𝑂2
) + 𝑥𝐶𝑂2

 (16) 

𝐾𝐻 = (52.58𝑒
−1.016∙

𝐻
𝐶 𝑛𝑜 + 3.552𝑒

−0.03437∙
𝐻
𝐶 𝑛𝑜) ∙ (1 − 𝑥𝑁2

− 𝑥𝐶𝑂2
) (17) 

Heat capacity 𝑐𝑝 and enthalpy h for NG are calculated based on a reference NG 

temperature by regression functions in equation (18) and (19) for H/C ≤ 4 and in equation 

(20) and (21) for H/C > 4 without considering inert species being part of NG composition. 

NG data for some locations in Europe is taken for H/C ≤ 4 from the work of Hering [25]. 

Inert gas species are taken into account by a respective conversion as shown in equation 

(22) to (23), where single 𝑐𝑝 and ℎ values are calculated based on NASA polynoms [56]. 

𝑐𝑝,𝑛𝑜 = 8.944 (
𝐻

𝐶 𝑛𝑜
)

3

− 93.22 (
𝐻

𝐶 𝑛𝑜
)

2

+ 308.1
𝐻

𝐶 𝑛𝑜
− 274.3 (18) 

ℎ𝑛𝑜 = −1.283 ∙ 105 ∙ 𝑒
−0.1446

𝐻
𝐶 𝑛𝑜 − 6.42 ∙ 10−8 ∙ 𝑒

5.933
𝐻
𝐶 𝑛𝑜 (19) 
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𝑐𝑝,𝑛𝑜 = 79.29𝑒
−0.6982

𝐻
𝐶 𝑛𝑜 + 33.34𝑒

−0.006864
𝐻
𝐶 𝑛𝑜 (20) 

ℎ𝑛𝑜 = −9.359 ∙ 105 ∙ 𝑒
−0.819

𝐻
𝐶 𝑛𝑜 − 6.219 ∙ 104 ∙ 𝑒

−0.1277
𝐻
𝐶 𝑛𝑜 (21) 

𝑐𝑝 = 𝑐𝑝,𝑛𝑜 ∙ (1 − 𝑥𝑁2
− 𝑥𝐶𝑂2

) + 𝑐𝑝,𝐶𝑂2
∙ 𝑥𝐶𝑂2

+ 𝑐𝑝,𝑁2
∙ 𝑥𝑁2

 (22) 

ℎ𝑁𝐺 = ℎ𝑛𝑜 ∙ (1 − 𝑥𝑁2
− 𝑥𝐶𝑂2

) + ℎ𝐶𝑂2
∙ 𝑥𝐶𝑂2

+ ℎ𝑁2
∙ 𝑥𝑁2

 (23) 

A smooth transition between H/C ≤ 4 and H/C > 4 by equation (24) is used to ensure a 

continuous calculation of a variable needed for a stable solving process, where the 

function for H/C ≤ 4 is multiplied with 𝐶𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 and the function for H/C > 4 is multiplied 

with (1-𝐶𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛). 

𝐶𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 0.5 ∙ [1 + tanh (−
2𝜋 (

𝐻
𝐶 − 4)

0.001
)] (24) 

 

3 Soft-sensor models of SOFC components  

3.1 Basic concept 

The soft-sensor concept proposed within this work represents a hybrid model combining 

physic-based and data-based model approaches, which is implemented with the open-

software tool Python and the toolbox scikit-learn [57,58]. The basic idea is to model a 

component of a SOFC system with a simple energy balance as physic-based model by 

means of enthalpy flow rates in dependence of solely one unknown variable and enhance 

it with a data-based model. Input variables are measured variables such as volume flow 

rates, temperatures, stack current and voltage. The energy balance is solved by a 

numerical procedure determining the unknown variable. The model concept is based on 

the following assumptions: 
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- Presence of a stationary operating point 

- Applicability of the ideal gas law 

- Gas-tightness of the whole SOFC-system 

- Complete combustion of fuel in TGB 

The high-level approach of this concept is based on coupled mechanisms and 

dependencies within a SOFC system. Assuming constant manipulated variables (e.g. 

recirculation ratio, flow rate of NG, stack current) in a SOFC system, a change in NG 

compositions essentially results in a change of temperature at some location. As an 

example, change of NG composition to a lower heating value leads to a higher 𝐹𝑈𝑠𝑡𝑎. This 

in turn results in a lower amount of unconverted fuel gas at the TGB inlet, leading to a 

lower TGB outlet temperature. The correlation between NG composition and 

temperatures is essentially used to conclude about NG composition. 

An energy balance is done at a component, which is not included in or encompasses the 

recirculation loop. As figure 2 shows, this holds true for the TGB, heat exchangers HEX 

1, 2 or the hotbox. The remaining unknown is the H/C-ratio of NG. All other variables are 

measured or calculated quantities. This implies the prerequisite of constant or known 

amount of inert NG species 𝑥𝑁2
, 𝑥𝐶𝑂2

. HEX 1 and 2 show only a small dependency on the 

H/C-ratio due to the sole heat exchange without fuel gas conversion. Better suited in this 

regard are the TGB and the hotbox being treated in this study. 

Modelling a component with an ideal energy balance is always associated with some 

error in comparison to reality. It is stated as enthalpy error and includes measurement 

errors of variables, which enter the energy balance such as temperatures, as well as heat 

losses of the component. The operating point dependent enthalpy error of the component 

is modelled in advance with a Gaussian process (GP) regression model. GP modelling is 

a supervised machine-learning algorithm based on known training data for model 

generation, where some basic remarks on GP modelling is given in appendix B for the 

interested reader. 

The GP regression model is used for correction of the ideal energy balance to achieve a 

good fit with the component’s real behavior. Modelling of the enthalpy error is done by 

supplying a fuel gas with known composition such as CH4 or by supplying NG in 
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conjunction with a high precision gas analyzer (e.g. gas chromatograph). Based on 

Dubourg et al. [59], the kernel for all the Gaussian process regression models used within 

this work is the product of a constant kernel and an RBF kernel. Multiplying the RBF by a 

constant kernel represents a scaling of the RBF kernel, which leads to a significant 

improvement in the accuracy of the enthalpy error estimation in terms of mean absolute 

error (MAE) with respect to validation data (see below). 

The concept of the hybrid model can thus be generalized as stated in equation (25). 

Therein 𝐻̇𝑖 is the enthalpy flux i coming or leaving a component, 𝑉𝑎𝑟𝑚𝑒𝑎𝑠 and 𝑉𝑎𝑟𝑐𝑎𝑙 

describe measured and calculated variables used in the energy balance. It shall be noted 

that the enthalpy error term 𝐻̇𝑒𝑟𝑟𝑜𝑟 comprises both the physical present heat loss of the 

specific component as well as the error of the ideal energy balance since it cannot be 

differentiated. 

∑ 𝐻̇𝑖 (
𝐻

𝐶
; 𝑉𝑎𝑟𝑚𝑒𝑎𝑠; 𝑉𝑎𝑟𝑐𝑎𝑙)

𝑖

+ 𝐻̇𝑒𝑟𝑟𝑜𝑟(𝐺𝑃; 𝑉𝑎𝑟𝑚𝑒𝑎𝑠; 𝑉𝑎𝑟𝑐𝑎𝑙) = 0 (25) 

Based on the H/C-ratio the gas coefficient 𝐾𝑒− is calculated by means of the correlation 

shown above. Subsequently 𝐹𝑈𝑠𝑦𝑠 can be calculated by equation (1) and 𝐹𝑈𝑠𝑡𝑎 can be 

calculated by equation (2) for known recirculation ratio. The method also allows to 

calculate the heat capacity cp or density of NG. Using NG heat capacity, it is possible to 

correct the NG flow measured with a thermal flowmeter. Using NG density, the density at 

a recirculation blower can be determined to enhance recirculation ratio calculation. 

3.2 Tailgasburner 

The H/C-ratio in the TGB exhaust gas is calculated by performing an energy balance at 

its boundaries. Assuming a gas-tight system, the H/C-ratio in the TGB exhaust gas is 

equal to the H/C-ratio in the NG. The general energy balance is given in equation (26) 

and visualized in figure 3 (a) in dependence of the enthalpy fluxes entering and leaving 

the TGB. It is composed of the air and anode offgas (ao) entering (in) the TGB, offgas 

(og) leaving the TGB and the enthalpy error to adjust the ideal energy balance to the real 

behavior of the TGB.  
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𝐻̇𝑎𝑖𝑟,𝑇𝐺𝐵,𝑖𝑛 + 𝐻̇𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛 − 𝐻̇𝑜𝑔,𝑇𝐺𝐵,𝑜𝑢𝑡 − 𝐻̇𝑒𝑟𝑟𝑜𝑟,𝑇𝐺𝐵(𝐺𝑃; 𝑉𝑎𝑟𝑚𝑒𝑎𝑠; 𝑉𝑎𝑟𝑐𝑎𝑙) = 0 (26) 

 

Figure 3: Visualization of enthalpy balance at the boundaries of the TGB (a) and at the 

boundaries of the hotbox. 

The enthalpy flux of anode offgas entering the TGB 𝐻̇𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛 is calculated according to 

equation (27) in dependence of the respective molar flow rate 𝑛̇𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛 and specific 

enthalpy ℎ𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛. The specific enthalpy is calculated as sum of the enthalpies for the 

individual gas species such as H2, H2O, CO2, CO, CH4 and N2, which are weighted with 

its concentrations as shown in equation (28). Specific individual enthalpies ℎ𝑖,𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛 are 

calculated based on NASA polynoms [56] in dependence of gas temperature, which is a 

measured quantity. The concentrations of the individual gas species are calculated under 

the assumption of thermodynamic equilibrium by means of minimization of Gibbs energy 

for constant pressure and temperature [60–62]. Within this work, the open-source 

software Cantera [62] in conjunction with the database USC-Mech II [63] is used for 

calculation of chemical equilibrium, based on theory by Smith and Missen [64–66]. Input 

variables are the atomic quantity of oxygen, carbon, hydrogen and nitrogen with respect 

to carbon, yielding in the O/C-ratio, 1, H/C-ratio and N/C-ratio. H/C-ratio is the quantity of 

interest, which is supposed to be calculated. N/C-ratio is a constant quantity for stationary 

operating conditions. N/C-ratio can thus be calculated by the ratio of 𝐾𝑁 = 2𝑥𝑁2
 and 𝐾𝐶 in 

NG, where the latter is expressed as function of the H/C-ratio as shown above. The O/C-
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ratio downstream of the stack is defined in equation (29) in dependence of known (𝑛𝑐𝑒𝑙𝑙, 

𝑉𝑛𝑜𝑟𝑚, 𝑥𝐶𝑂2
, F), measured (𝑖𝑐𝑒𝑙𝑙, 𝑉̇𝑁𝐺) or calculated quantities (𝐾𝐶). 

𝐻̇𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛 = 𝑛̇𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛 ∙ ℎ𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛(𝑡𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛 ; 𝑥𝑖,𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛) (27) 

ℎ𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛(𝑡𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛 ; 𝑥𝑖,𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛) = ∑ ℎ𝑖,𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛 ∙ 𝑥𝑖,𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛

𝑖

 (28) 

𝑂

𝐶𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛
=

∆𝑛̇𝑂,𝑠𝑡𝑎

𝑛̇𝑁𝐺 ∙ 𝐾𝐶
+

2𝑥𝐶𝑂2

𝐾𝐶
=

𝑖𝑐𝑒𝑙𝑙 ∙ 𝑛𝑐𝑒𝑙𝑙 ∙ 𝑉𝑛𝑜𝑟𝑚

2𝐹 + 2𝑥𝐶𝑂2
∙ 𝑉̇𝑁𝐺

𝐾𝐶  ∙ 𝑉̇𝑁𝐺

 (29) 

Assuming no gas leakage in the SOFC system, the molar flow rate of carbon atoms is 

constant and is used to describe the molar flow rate of fuel gas entering the TGB by 

equation (30). The gas composition at TGB inlet is calculated as mentioned above. 

𝑛̇𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛 =
𝑛̇𝑁𝐺 ∙ 𝐾𝐶

𝑥𝐶𝐻4,𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛 + 𝑥𝐶𝑂,𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛 + 𝑥𝐶𝑂2,𝑎𝑜,𝑇𝐺𝐵,𝑖𝑛
 (30) 

The enthalpy flux of air 𝐻̇𝑎𝑖𝑟,𝑇𝐺𝐵,𝑖𝑛 is calculated by equation (31). The specific enthalpy for 

nitrogen and oxygen is calculated by means of NASA polynoms [56] in dependence of 

the respective temperature. The cathode outlet oxygen molar flow rate is calculated 

according to equation (32) in dependence of the oxygen amount entering the SOFC 

system and the cell current. Since N2 is an inert species, its amount stays constant and 

its molar flow rate is calculated by equation (33) in dependence of the oxygen amount in 

ambient air, which is typically around 21%. 

𝐻̇𝑎𝑖𝑟,𝑇𝐺𝐵,𝑖𝑛 = 𝑛̇𝑁2,𝑎𝑖𝑟,𝑇𝐺𝐵,𝑖𝑛 ∙ ℎ𝑁2,𝑎𝑖𝑟,𝑇𝐺𝐵,𝑖𝑛 + 𝑛̇𝑂2,𝑎𝑖𝑟,𝑇𝐺𝐵,𝑖𝑛 ∙ ℎ𝑂2,𝑎𝑖𝑟,𝑇𝐺𝐵,𝑖𝑛 (31) 

𝑛̇𝑂2,𝑎𝑖𝑟,𝑇𝐺𝐵,𝑖𝑛 = 𝑛̇𝑎𝑖𝑟,𝑖𝑛 ∙ 𝑥𝑂2,𝑖𝑛 −
𝑖𝑐𝑒𝑙𝑙 ∙ 𝑛𝑐𝑒𝑙𝑙

4𝐹
 (32) 

𝑛̇𝑁2,𝑎𝑖𝑟,𝑇𝐺𝐵,𝑖𝑛 = 𝑛̇𝑎𝑖𝑟,𝑖𝑛 ∙ (1 − 𝑥𝑂2,𝑖𝑛) (33) 

For a complete combustion in the TGB, the enthalpy flux of the offgas 𝐻̇𝑜𝑔,𝑇𝐺𝐵,𝑜𝑢𝑡 is 

expressed by equation (34) to (38). The respective specific enthalpies are calculated by 

means of NASA polynoms [56]. 
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𝐻̇𝑜𝑔,𝑇𝐺𝐵,𝑜𝑢𝑡(𝑡𝑜𝑔,𝑇𝐺𝐵,𝑜𝑢𝑡 ; 𝑥𝑖,𝑜𝑔,𝑇𝐺𝐵,𝑜𝑢𝑡) = ∑ 𝑛̇𝑗,𝑜𝑔,𝑇𝐺𝐵,𝑜𝑢𝑡 ∙ ℎ𝑗(𝑡𝑜𝑔,𝑇𝐺𝐵,𝑜𝑢𝑡)

𝑗=𝐶𝑂2,𝐻2𝑂,𝑂2,𝑁2

 (34) 

𝑛̇𝐶𝑂2,𝑜𝑔,𝑇𝐺𝐵,𝑜𝑢𝑡 = 𝑛̇𝑁𝐺 ∙ 𝐾𝐶 (35) 

𝑛̇𝐻2𝑂,𝑜𝑔,𝑇𝐺𝐵,𝑜𝑢𝑡 = 𝑛̇𝑁𝐺 ∙ 𝐾𝐶 ∙
𝐻

𝐶
∙

1

2
 (36) 

𝑛̇𝑂2,𝑜𝑔,𝑇𝐺𝐵,𝑜𝑢𝑡 = 𝑛̇𝑎𝑖𝑟,𝑖𝑛 ∙ 𝑥𝑂2,𝑖𝑛 − 𝑛̇𝐶𝑂2,𝑜𝑔,𝑇𝐺𝐵,𝑜𝑢𝑡 + 𝑛̇𝑁𝐺 ∙ 𝑥𝐶𝑂2,𝑁𝐺 −
1

2
𝑛̇𝐻2𝑂,𝑜𝑔,𝑇𝐺𝐵,𝑜𝑢𝑡 (37) 

𝑛̇𝑁2,𝑜𝑔,𝑇𝐺𝐵,𝑜𝑢𝑡 = 𝑛̇𝑎𝑖𝑟,𝑖𝑛(1 − 𝑥𝑂2,𝑖𝑛) + 𝑥𝑁2,𝑁𝐺 ∙ 𝑛̇𝑁𝐺 (38) 

The enthalpy error 𝐻̇𝑒𝑟𝑟𝑜𝑟,𝑇𝐺𝐵 is modeled with a GP regression model to achieve a good 

fit with the real TGB behavior, using available measurement data from the SOFC system 

at different operating points. It is modelled by some training data supplying CH4 as fuel 

gas, which has a constant H/C-ratio of 4, and NG in conjunction with measurements by a 

high precision gas chromatograph system (Agilent 7890 [67]). 

By inserting all the equations in the main equation (26) for the TGB energy balance, all 

input variables are measured or calculated values, except the H/C-ratio, which is the 

unknown of interest and is calculated using a numerical process. 

3.3 Hotbox 

The Hotbox is the second component used within this study as calorimeter to estimate 

H/C-ratio in the exhaust gas by performing an energy balance at its boundaries. Assuming 

a gas-tight system, it is equal to the H/C-ratio in the NG feed line. 

The general energy balance is given in equation (39) and shown in figure 3 (b) in 

dependence of the enthalpy fluxes entering and leaving the hotbox. It is composed of the 

air and NG entering (in) the hotbox, offgas (og) leaving the hotbox, electric DC power of 

the stack and the enthalpy error.  

𝐻̇𝑎𝑖𝑟,𝑖𝑛 + 𝐻̇𝑁𝐺 − 𝐻̇𝑜𝑔,𝑆𝑂𝐹𝐶,𝑜𝑢𝑡 − 𝐻̇𝑒𝑟𝑟𝑜𝑟(𝐺𝑃; 𝑉𝑎𝑟𝑚𝑒𝑎𝑠; 𝑉𝑎𝑟𝑐𝑎𝑙) − 𝑃𝐷𝐶,𝑠𝑡𝑎 = 0 (39) 
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The electric DC power of the stack 𝑃𝐷𝐶,𝑠𝑡𝑎 is calculated as product of the measured stack 

voltage and current. The enthalpy flux of NG 𝐻̇𝑁𝐺 is calculated according to equation (40) 

in dependence of the respective molar flow rate 𝑛̇𝑁𝐺 and specific enthalpy ℎ𝑁𝐺, where the 

latter is calculated by equation (23). The molar flow rate 𝑛̇𝑁𝐺 is defined by equation (41) 

in dependence of the volume flow rate and the molar volume of ideal gas. NG volume 

flow rate is controlled with a thermal mass flow meter calibrated with CH4. The measured 

volume flow rate is thus adjusted by NG temperature as well as the specific heat capacity 

of CH4 and NG, which is expressed as a function of the H/C-ratio as shown above. 

𝐻̇𝑁𝐺 = 𝑛̇𝑁𝐺 ∙ ℎ𝑁𝐺 (40) 

𝑛̇𝑁𝐺 =
𝑉̇𝑁𝐺

𝑉𝑛𝑜𝑟𝑚
 (41) 

The enthalpy flux of air 𝐻̇𝑎𝑖𝑟,𝑖𝑛 entering the hotbox is calculated by equation (42). The 

specific enthalpy for nitrogen and oxygen is calculated by means of NASA polynoms [56]. 

The molar flow rate of O2 and N2 are calculated by equation (43) and (44) in dependence 

of the ambient oxygen amount and measured volume flow rate of air. 

𝐻̇𝑎𝑖𝑟,𝑖𝑛 = 𝑛̇𝑁2,𝑎𝑖𝑟,𝑖𝑛 ∙ ℎ𝑁2,𝑎𝑖𝑟,𝑖𝑛 + 𝑛̇𝑂2,𝑎𝑖𝑟,𝑖𝑛 ∙ ℎ𝑂2,𝑎𝑖𝑟,𝑖𝑛 (42) 

𝑛̇𝑂2,𝑎𝑖𝑟,𝑖𝑛 =
𝑉̇𝑎𝑖𝑟,𝑖𝑛

𝑉𝑛𝑜𝑟𝑚
∙ 𝑥𝑂2,𝑖𝑛 (43) 

𝑛̇𝑁2,𝑎𝑖𝑟,𝑖𝑛 =
𝑉̇𝑎𝑖𝑟,𝑖𝑛

𝑉𝑛𝑜𝑟𝑚
(1 − 𝑥𝑂2,𝑖𝑛) (44) 

With the sole difference in gas mixture temperature, the enthalpy flux of the offgas 

𝐻̇𝑜𝑔,𝑆𝑂𝐹𝐶,𝑜𝑢𝑡 is calculated by equation (45) analogously to the enthalpy flux of the TGB 

offgas in equation (34). After the complete conversion in the TGB, there is no further 

change in gas composition, but a change in temperature due to internal heat recovery in 

the SOFC system. The respective specific enthalpies are calculated by means of NASA 

polynoms [56] and the molar flow rates by equation (35) to (38). 
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𝐻̇𝑜𝑔,𝑆𝑂𝐹𝐶,𝑜𝑢𝑡(𝑡𝑜𝑔,𝑆𝑂𝐹𝐶,𝑜𝑢𝑡 ; 𝑥𝑖,𝑜𝑔,𝑇𝐺𝐵,𝑜𝑢𝑡)

= ∑ 𝑛̇𝑗,𝑜𝑔,𝑇𝐺𝐵,𝑜𝑢𝑡 ∙ ℎ𝑗(𝑡𝑜𝑔,𝑆𝑂𝐹𝐶,𝑜𝑢𝑡)

𝑗=𝐶𝑂2,𝐻2𝑂,𝑂2,𝑁2

 
(45) 

The enthalpy error 𝐻̇𝑒𝑟𝑟𝑜𝑟 is modeled with a GP regression model, using available 

measurement data from the SOFC system supplying CH4 and NG as fuel gas. 

By inserting all equations in the main equation (39), all input variables are measured or 

calculated values, except the H/C-ratio, which is the unknown of interest and is calculated 

using a numerical process to solve the energy balance. 

 

4 Experimental procedure and results 

4.1 Experimental procedure 

Real data of a SOFC system is required for the implementation of the concepts. It 

concerns the measured values of volume flow rates, temperatures, voltage and current 

of the stack. Data from a SOFC system as outlined in figure 2 is used. This includes 

SOFC system operation with real NG in Renningen, Germany, as well as operation with 

CH4. The NG operation of the SOFC system was accompanied with an intensive analysis 

of the supplied NG with measurements by a high precision gas chromatograph system 

(Agilent 7890B [67]). 

For the implementation of the presented models, constant and stationary operating 

conditions of the SOFC system are required. The operating conditions of the SOFC 

system are therefore reduced by transient state points. The variables for the verification 

of steady-state operating conditions are chosen in such a way that the influences of the 

thermal capacities of the main components (reformer, stack, afterburner, hotbox) are 

captured by respective temperatures and volume flow rates. A steady-state detection 

algorithm is used for preselection, which is based on the comparison of the variance of a 

measured variable with the corresponding variance limit of a reference signal. Data points 

are eliminated, which occur consecutively (within a 2h interval) or are almost identical and 

thus do not contribute to knowledge on system behavior. From 186 data points in total, 

47 and 85 data points for operation with NG and CH4 are finally available for training and 
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validation of the models. An overview and its division into training and validation data is 

listed in . 

Table 1. The data points include combinations of values for 𝐹𝑈𝑠𝑡𝑎 (55, 60, 65%) and four 

different cell currents (13.5, 16, 17, 22.2 A) as setpoints. For safety reasons to avoid 

coking, 𝛹 has been limited to a fixed value of 2.4 based on feed-forward control. Data is 

sorted into training and validation data in a way that ensures that a given combination of 

setpoints is included at least once in the training data. 

Table 1: Overview of CH4 and NG data and its division into training and validation data 

Type of fuel 

gas 

Total Training Validation Training + 

Validation 

CH4 115 17 68 85 

NG 71 18 29 47 

Total (NG + 

CH4) 

186 35 97 132 

 

4.2 Inert gas species estimation 

The presented concepts are based on the assumption that the concentrations of CO2 and 

N2 are known or constant. The latter is not true for NG from the grid. Since it is aimed to 

determine the H/C-ratio without NG analysis, these variables can also not be assumed 

as known. Despite the small variation range of a few percentages, it is found that the 

exact concentration values have some influence on model performance and the 

calculation of the H/C-ratio. Its influence is thus not negligible and the assumption of 

constant values cannot be considered reasonable. Accordingly, a determination of these 

two quantities must be included in the soft-sensor concept. 

It is done by estimation of the concentration values using GP regression models and 

available measurement data from the SOFC system. To determine the input variables of 

the GP regression models, Pearson's correlation coefficients are used to quantify a 

sufficient and meaningful correlation by limitation to values between 0.5 and 1 (perfect 
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correlation) as well as -0.5 to -1 (perfect inverse correlation) [68]. The Pearson correlation 

coefficient is a measure of the linear correlation between two features. 

The input variables of the GP regression model for estimating CO2 concentration are the 

volume flow rates of supplied NG and air to the SOFC system as well as its temperatures, 

inlet and outlet temperature of the reformer and the temperatures of the offgas after the 

TGB. Further variables are the outlet temperature of the fuel gas and the outlet 

temperature of air at an internal heat exchanger. The same parameters are used as input 

variables for N2 estimation, except the reformer outlet temperature. 
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Figure 4: Estimation results for GP regression models for estimation of CO2 and N2 

concentrations in NG and CH4 based on training data (a) and based on validation data 

samples without CO2 and N2 as input variables. 

The accuracy of the GP regression models with respect to training and validation data 

are shown in figure 4 (a) and figure 4 (b). A negligible deviation is achieved for the training 

data in figure 4 (a), which is attributed to its use for training of the GP regression models. 

A good accuracy of the overall estimation on validation data is shown in figure 4 (b).  

Small deviations in the estimation in figure 4 (b) are present for data point 1 and 24 for 

both CO2 and N2, where the latter is accompanied by some negligible low deviations for 

the neighboring data samples. Data point 1 and data point 24 are both operated with an 
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𝐹𝑈𝑠𝑡𝑎 of 65% and a cell current of 22.2 A, which are similar to other operating conditions 

used as data points within the study though. A respective influence of a unique operating 

point is therefore not present for data point 24, which means that the deviations cannot 

be attributed to it. At data point 1 the SOFC system has been operated with a slightly 

smaller recirculation ratio compared to the other data points, to which the deviations can 

accordingly be attributed. 

The analysis with the Pearson correlation coefficients also showed a mutual interference 

of CO2 and N2. Its concentration is therefore added as mutual input variable for the GP 

regression models. Figure 5 (a) shows the respective results for estimation of CO2 and 

N2 concentrations on the relevant validation data.  
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Figure 5: Estimation results for GP regression models for estimation of CO2 and N2 

concentrations in NG and CH4 based on validation data samples with real CO2 and N2 as 

mutual input variables (a) and final results of procedure implemented in the components 

models (b). 

Figure 5 (a) states a higher accuracy of the CO2 and N2 estimation than the results 

presented in figure 4 (b) without CO2 and N2 as input variables. Small deviations in the 

estimation are still present for data point 1 for both CO2 and N2. The deviations of the 

estimation in data point 24 and its neighboring data points has been improved significantly 
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by the mutual integration. The mutual integration of inert gas species concentrations is 

therefore an improvement in the overall estimation quality. 

Since no concentration value is available at the beginning of the calculation process for 

either CO2 or N2, the following procedure is applied. In a first step, the CO2 fraction is 

estimated without N2 as input variable as shown in Figure 4. In a second step, the N2 

fraction is estimated, where the estimated CO2 concentration from the first step is included 

as input variable. In a third step, the CO2 fraction is determined with the N2 concentration 

of the second step as input variable. The N2 fraction from the second step and the CO2 

fraction from the third step are then used in the soft-sensor models. 

Figure 5 (b) shows the results of this procedure based on the validation data. Some small 

deviations in the estimation are again present for the data samples around data point 24 

for both CO2 and N2. While being similar to the deviations shown in figure 4 for the 

estimation results without CO2 and N2 as mutual input variables, the deviations in 

figure 5 (b) are smaller in the mean. The GP regression models exhibit therefore a good 

overall estimation quality, which leads to a significant improvement compared to the 

assumption of constant concentrations of e.g. 0.5%. 

4.3 Estimation results for enthalpy errors 

The input variables of the GP regression model estimating the TGB enthalpy error are 

essentially variables used in the basic model. Explicitly, these are the cell current, the 

volume flow rates of supplied NG and air to the SOFC system, CO2 and N2 concentration, 

the temperatures at the inlet and outlet of the TGB as well as the temperature of the 

supplied NG. Based on a sensitivity analysis, it could be shown that stack voltage and the 

temperature of the offgas leaving the SOFC system has a positive influence on estimation 

quality and are included as input variables. For estimating the enthalpy error of the hotbox, 

input variables of the GP regression model are the electric DC power of the stack, the 

volume flow rates of supplied NG and air to the SOFC system. Further input variables are 

CO2 and N2 concentration, the offgas temperature at the outlet of the hotbox as well as 

the temperature of the supplied NG and air. A sensitivity analysis has also shown that the 

temperature of air before the stack inlet has a positive influence on estimation quality and 

is included as input variable. 
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The GP regression models exhibit an improved estimation quality when the H/C-ratio is 

used as input variable. The GP regression model then must be included in the iterative 

solution of the enthalpy balance to determine the H/C-ratio. This leads to a much more 

complex model and carries a high risk of instability problems in the computational 

process. Since it does not deteriorate seriously the estimation quality, the enthalpy error 

is modeled independently of the H/C-ratio to ensure a stable computational process. 

Estimation results for the enthalpy errors of the TGB and the hotbox with respect to the 

training and validation data are given in figure 6 (a) and (b). While there are no or only 

negligible deviations for the estimates on the training data, there are small deviations for 

the estimates on the validation data. The most significant deviation of the estimation is 

shown by both the hotbox and the TGB at data point 1. This is explained by comparison 

to the training data. As mentioned above represents data point 1 of the validation data an 

operation condition that occurs only once in the entire data set for training and validation 

regarding a slightly reduced recirculation ratio. Since a comparable data point does not 

occur in the training data the GP regression model may not have the ability to predict this 

point perfectly. The quantitative lack of SOFC data sets in steady state based on NG as 

fuel gas is naturally leading to uncertainties and inaccuracies in an empirical model. A 

broader base of NG data with different compositions combined with a wide variation of 

operating parameters that also covers this or other deviant behavior is here desirable. 

Except from data point 1 the GP regression models show a very high estimation quality 

of the enthalpy errors though.                                                                                           
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Figure 6: Estimation results for GP regression models for estimation of enthalpy errors 

for TGB and hotbox based on training data samples (a) and validation data samples (b). 

 

4.4 Estimation results for H/C-ratio 

Figure 7 shows the results for the estimation of the H/C-ratio on the training data for both 

the TGB and the hotbox. Figure 8 shows the results on the validation data for the TGB 

and the hotbox separately as well as its respective relative errors. 
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Figure 7: Results for determination of H/C-ratio with TGB and hotbox enthalpy model 

based on training data samples. 

Figure 7 shows that there is a good agreement of the estimated H/C-ratio with the real 

values. With respect to the training data, an almost perfect agreement with a negligible 

deviation is achieved. This is attributed to the use of these data for the training of the 

Gaussian process models and a respective almost perfect estimation of CO2, N2 and the 

enthalpy errors. The results on the training data can thus not be distinguished between 

the two models (TGB, hotbox).  

Differences are rather present on the validation data in figure 8 (a) and (b). The largest 

deviations occur at data point 1 as well as for the data samples around data point 24 with 

a relative error of about ±0.15% with respect to the real H/C-ratio, excluding data point 1 

for the TGB model with a relative error of about -0.35%. While both CO2 and N2 estimates 

show slight inaccuracies at data point 1 and the data samples around 24, an inaccuracy 

of the estimate in the enthalpy errors is only present at data point 1.  

At data point 1 the enthalpy error estimates deviate noticeably from the real value, which 

leads mainly to the maximum deviation of approximately -0.35% in the H/C-ratio for the 

TGB model and about -0.09% in the H/C-ratio for the hotbox model. For the data samples 

around data point 24 the N2 and CO2 estimates show a slight deviation from the real 

value, which leads to the deviations of ~ ±0.15% in the H/C-ratio. While no clear indication 
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about a respective share or influence on the H/C-ratio is given, it is expected that the 

determination of the H/C-ratio has a higher sensitivity to the CO2 estimate and the 

influence of the N2 estimate on the determination of the H/C-ratio is considered small. 

This is attributed to the fact that CO2, in contrast to N2, is not only included in the 

concentration shift of the other concentrations but also enters directly in the H/C-ratio as 

a variable. 

 

Figure 8: Results for determination of H/C-ratio with TGB enthalpy model (a) and hotbox 

enthalpy model (b) and their relative error based on validation data samples. 

In comparison, both models (TGB, hotbox) show almost the same overall accuracy. While 

the TGB model shows the higher maximum inaccuracy at data point 1 with a maximum 
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deviation of only -0.35%, both models exhibit a good accuracy in average. This is reflected 

in a marginal difference of the MAE of 0.011% for the hotbox model and 0.022% for the 

TGB model on the validation data. Significant differences in accuracy are hard to notice. 

Only in data point 1, for the data samples around data point 24 and marginally in data 

point 36 are small differences present. The inaccuracies are at very low values though, 

which is why a high model quality is stated for both model approaches. Both models are 

thus suited and show a high potential for the determination of the H/C-ratio in NG.  

 

5 Summary and conclusion 

For safe and durable operation of a SOFC system it is of crucial importance to monitor 

the oxygen-to-carbon-ratio and fuel utilization and keep them within operating limits. 

Monitoring and control of these characteristic parameters is not trivial to both, the 

correlations within a SOFC system with AEGR and on fluctuating NG quality.    

The authors present a soft-sensor concept to determine the H/C-ratio as measure of NG 

quality by a hybrid model approach. The hotbox and TGB of a SOFC system are modelled 

with an energy balance as physic-based model in dependency of the H/C-ratio as solely 

unknown. The enthalpy errors of the ideal energy balance are modeled with a GP 

regression model as data-based regression model. Other GP regression models are used 

to estimate the unknown amount of inert gas species 𝑥𝑁2
, 𝑥𝐶𝑂2

 in NG. Input variables are 

volume flow rates, temperatures, stack current and voltage. For stationary operation the 

energy balance is solved and the H/C-ratio is determined.  

Both models show almost the same overall accuracy. While the TGB model shows the 

higher maximum inaccuracy at data point 1 with a maximum deviation of only -0.35%, 

both models exhibit a good accuracy in average. This is reflected in a marginal difference 

of the MAE of 0.011% for the hotbox model and 0.022% for the TGB model on the 

validation data. Significant differences in accuracy are hard to notice. The inaccuracies 

are at very low values, which is why a high model quality is stated for both model 

approaches showing a high potential for determination of the H/C-ratio.  

Further studies, which need to be done subsequently include the following tasks: 
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- Derive a broader base of NG data with different compositions and variation of 

operating parameters. 

- Extend offline tests to SOFC systems with different system layouts, analyze the 

differences and evaluate the potential to generalize the presented approach by a 

small calibration procedure to account for variations in system behavior. 

- Performing of experimental tests directly on a real SOFC system for verification of 

the concept.  
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6 Nomenclature 

Latin characters 

Symbol Meaning Unit 

a Correction factor for H/C-ratio - 

C Transition variable for H/C-ratio = 4 - 

cp Specific molar heat capacity J K-1 mol-1 

Ε Expected value - 

f Function  - 

f* Estimated functional value with Gaussian process - 

F Faraday-constant C/mol 

h Specific enthalpy J mol-1 

𝐻̇𝑖  Enthalpy flux W 

I Current  A 

i Current density A/cm² 

k(xi, xj) Covariance function - 

K Gas coefficients - 

l Characteristic lengthscale - 

m(x) Mean of Gaussian process - 

n Number - 

𝑛̇ Molar flow rate of gas Mol/s 

P Electrical power W 

𝑟 Recirculation ratio % 

T Temperature °C 

U Voltage V 

V Volume l 

𝑉̇ Volume flow rate l/min 

x Concentration of gas spcies % 

x*, xi, xj Input variables for Gaussian process - 
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Greek characters 

Symbol Meaning Unit 

∆𝑛̇𝑂 Difference in molar oxygen flow rate mol s-1 

η Efficiency % 

μ* Predicted variance in Gaussian process - 

𝜎𝑓
2 Signal variance - 

𝛹 Oxygen-to-carbon-ratio mol mol-1  

 

Abbreviations 

Abbreviation Meaning 

AC Alternating current 

AEGR Anode exhaust-gas recirculation  

AU Air utilization 

Cell Single cell of a fuel cell 

CH4 Methane 

C2H6 Ethane 

C3H8 Propane 

C4H10 Butane 

CO Carbon monoxide 

CO2 Carbon dioxide 

DC Direct Current 

FC Fuel cell 

FU Fuel utilization 

GP Gaussian Process 

H2 Hydrogen 

H/C Hydrogen-to-carbon-ratio 

H2O Water  
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HEX Heat exchangers 

MAE Mean absolute error 

N2 Nitrogen 

NG Natural gas 

TGB Tailgasburner 

O2 Oxygen 

O/C Oxygen-to-carbon-ratio 

SOFC Solid oxide fuel cell  

Var Variable 

 

Subscripts 

Subscript Meaning 

air Supplied air to fuel cell 

an Anode  

ao Anode offgas 

TGB Tailgasburner  

C Carbon  

cal Calculated 

cell Cell of a fuel cell 

DC Direct current 

e- Electrons  

El Electrical  

Error Error 

FC Fuel cell 

H Hydrogen 

i Species i 

in Inlet  

meas Measured 
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N Nitrogen 

NG Natural gas 

No No inert species considered 

norm Norm condittions 

O Oxygen  

og Offgas 

out Outlet 

rec recirculated 

sta Fuel cell stack 

sys Fuel cell system 

Transition Transition for H/C-ratio = 4 
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Appendix 

A. Derivation of correlation formula for H/C ≤ 4 

With the definition of the H/C-ratio, the prerequisite that only alkanes are present as NG 

components and the structural formula of the alkanes, the following two equations (A.1) 

and (A.2) apply. The index “no” states that inert gas species are not considered. 

𝐻

𝐶 𝑛𝑜
=

𝐾𝐻,𝑛𝑜

𝐾𝐶,𝑛𝑜
 

(A.1) 

𝐾𝐻,𝑛𝑜 = 2𝐾𝐶,𝑛𝑜 + 2 (A.2) 

Thus 𝐾𝐻,𝑛𝑜 and 𝐾𝐶,𝑛𝑜 if represented as a function of H/C-ratio 

𝐾𝐶,𝑛𝑜 =
2

𝐻
𝐶 𝑛𝑜

− 2
 

(A.3) 

𝐾𝐻,𝑛𝑜 =
2 ∙

𝐻
𝐶 𝑛𝑜

𝐻
𝐶 𝑛𝑜

− 2
 

(A.4) 

Using the definition of 𝐾𝑒− in equation (10), 𝐾𝑒−,𝑛𝑜 is analytically calculated by substituting 

the equations of 𝐾𝐶,𝑛𝑜 and 𝐾𝐻,𝑛𝑜 into equation (A.5). 

𝐾𝑒−,𝑛𝑜 = 𝐾𝐻,𝑛𝑜 + 4𝐾𝐶,𝑛𝑜 =
2 ∙

𝐻
𝐶 𝑛𝑜

+ 8

𝐻
𝐶 𝑛𝑜

− 2
 (A.5) 

By the definition of 𝐾𝐻, 𝐾𝐶 in equation (A.6) and (A.7) with respect to their values without 

inert gas species, the correlation between the real H/C-ratio of NG and the respective 

H/C-ratio without considering inert gas species is given by equation (A.8). 

𝐾𝐻 = 𝐾𝐻𝑛𝑜
∙ (1 − 𝑥𝑁2

− 𝑥𝐶𝑂2
) (A.6) 



 

 

42 

 

𝐾𝐶 = 𝐾𝐶𝑛𝑜
∙ (1 − 𝑥𝑁2

− 𝑥𝐶𝑂2
) + 𝑥𝐶𝑂2

 (A.7) 

𝐻

𝐶 𝑛𝑜
=

2
𝐻
𝐶 ∙ (1 − 𝑎)

2 − 𝑎 ∙
𝐻
𝐶

           ,          𝑎 =
𝑥𝐶𝑂2

1 − 𝑥𝑁2
− 𝑥𝐶𝑂2

 (A.8) 

Consequently, 𝐾𝑒−, 𝐾𝐶 and 𝐾𝐻 is calculated according to equation (A.9) to (A.11). 

𝐾𝑒− =
2 ∙

𝐻
𝐶 𝑛𝑜

+ 8

𝐻
𝐶 𝑛𝑜

− 2
∙ (1 − 𝑥𝑁2

− 𝑥𝐶𝑂2
) (A.9) 

𝐾𝐶 =
2

𝐻
𝐶 𝑛𝑜

− 2
∙ (1 − 𝑥𝑁2

− 𝑥𝐶𝑂2
) + 𝑥𝐶𝑂2

 
(A.10) 

𝐾𝐻 =
2 ∙

𝐻
𝐶 𝑛𝑜

𝐻
𝐶 𝑛𝑜

− 2
∙ (1 − 𝑥𝑁2

− 𝑥𝐶𝑂2
) (A.11) 

 

B. Gaussian process regression 

Machine learning algorithms are a common tool for estimation, regression and modelling 

and has been used in a variety of studies in general [69,70] and in the fuel cell field [71–

80]. One of the best-known variants is the Gaussian process (GP). GP modelling is a 

supervised machine-learning algorithm based on known training data for model 

generation in classification and regression problems, where the latter is used in this work 

[69,81–83]. In-deep knowledge on GP modelling is found in Rasmussen [82]. 

GP has the following advantages for usage as regression model: 

1. GP regression as non-parametric approach is not limited to a certain functional 

form to map input and output data, but rather needs only a mean and covariance 

function for its definition [69,82–84].   

2. Noise from measurement errors can be incorporated in GP regression [82]. 
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3. The estimated variance as part of the output of a GP regression captures the 

uncertainty of the estimation quantifiable [69]. 

4. In contrast to its complex theory, implementation is simple linear algebra [69]. 

A GP is defined by its mean function m(x) and its covariance function 𝑘(𝑥𝑖 , 𝑥𝑗)  for two 

input vectors 𝑥𝑖, 𝑥𝑗 given in equation (B.1) and (B.2) [69,81–83,85]. A common assumption 

is zero as mean of the GP [81,82,84]. The covariance function or kernel defines a priori 

the covariance between functional values (f(xi), f(xj)) and contains the prior knowledge of 

a GP [69,81–84]. A typical covariance function is the squared exponential covariance 

function defined in equation (B.3), which is also called radial-basis function (RBF) [81–

84,86]. Therein 𝜎𝑓
2 is the signal variance (vertical scale) as maximum value of allowable 

covariance (for 𝑥𝑖  ≈ 𝑥𝑗) and 𝑙 the characteristic lengthscale (horizontal scale) as 

hyperparameters, which need to be optimized [69,81,82,84,85]. The characteristic 

lengthscale 𝑙 defines the distance of two correlated functional values describing the 

smoothness of the underlying function [69,82–84].  

𝑚(𝑥) = 𝛦[𝑓(𝑥)] (B.1) 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝛦 [(𝑓(𝑥𝑖) − 𝑚(𝑥𝑖)) (𝑓(𝑥𝑗) − 𝑚(𝑥𝑗))] (B.2) 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜎𝑓
2𝑒𝑥𝑝 (−

‖𝑥𝑖 − 𝑥𝑗‖
2

2𝑙2
) (B.3) 

The functional values 𝑓(𝑥) for GP regression are said to be drawn of a multivariate GP, if 

they follow a joint Gaussian normal distribution as stated in equation (B.4) with mean 

function 𝑚(𝑥) and covariance function 𝑘(𝑥𝑖, 𝑥𝑗) for two input vectors 𝑥𝑖 , 𝑥𝑗 [69,81–84].  

𝑓(𝑥) ~ 𝐺𝑃 (𝑚(𝑥), 𝑘(𝑥𝑖, 𝑥𝑗)) (B.4) 

A new functional value f* with the input vector x*  is estimated based on a GP model, 

which has been trained with known data [83]. Its output is a Gaussian distribution with its 

predicted mean μ* as expected value for f* at point x* and a predicted variance of μ*, which 

captures the uncertainty or confidence of the estimation [69,81,83–85].  
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